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PL-30-059 Kraków, Poland

Received 12 December 2003, in final form 16 February 2004
Published 29 March 2004
Online at stacks.iop.org/JPhysA/37/L173 (DOI: 10.1088/0305-4470/37/15/L04)

Abstract
Entangled states play a crucial role in quantum information protocols, thus the
dynamical behaviour of entanglement is of great importance. In this letter, we
consider a two-mode squeezed vacuum state coupled to one thermal reservoir
as a model of an entangled state embedded in an environment. As a criterion for
entanglement we use a continuous-variable equivalent of the Peres–Horodecki
criterion, namely the Simon criterion. To quantify entanglement we use the
logarithmic negativity. We derive a condition, which assures that the state
remains entangled in spite of the interaction with the reservoir. Moreover for
the case of interaction with vacuum as an environment we show that a state
of interest after infinitely long interaction is not only entangled, but also pure.
For comparison we also consider a model in which each mode is coupled to its
own reservoir.

PACS numbers: 03.65.Ud, 03.67.−a, 03.67.Mn, 42.50.Dv

1. Introduction

A number of possible practical applications of entangled states have been proposed, including
quantum computation [1] and quantum teleportation [2, 3]. Thus it is very important to know
how the interaction with an environment influences the dynamical behaviour of entanglement.
In many experiments the process of the parametric down conversion in nonlinear crystals
[4, 5] serves as a source of entangled pairs, in which two-mode squeezed vacuum states are
produced. Hence, here we consider the time evolution of the two-mode squeezed vacuum,
as an example of a continuous-variable entangled state, embedded in a thermal environment.
Moreover, let us assume that, for some reason, e.g. storage, both modes are captured in
a resonant cavity, i.e. they are coupled to a common reservoir. Additionally we presume
that they have the same frequency. There has been intensive research in this direction, but
Jeong et al [6], Kim and Lee [7], Scheel et al [8], Hiroshima [9] and Paris [10] assumed that
the two-mode squeezed vacuum interacts with the environment in a different way. In their

0305-4470/04/150173+09$30.00 © 2004 IOP Publishing Ltd Printed in the UK L173

http://stacks.iop.org/ja/37/L173


L174 Letter to the Editor

model both modes are spatially separated and thus each of them is independently coupled to
its own reservoir. Both modes are taken to have the same frequency and the same coupling
constant. This model is justified while the two-mode squeezed vacuum can be used as a
quantum channel between sender and receiver stations in quantum teleportation [3]. There
is a possible experimental investigation of degradation of entanglement due to the interaction
with the environment [11].

2. Model and description

In this letter, we consider a bipartite system, namely, two modes of the electromagnetic field.
Each of these modes has the Hilbert space equivalent to the Hilbert space of the harmonic
oscillator. The Hilbert space of the system of interest is a tensor product of the subsystems’
Hilbert spaces, H = H1 ⊗H2. Each mode is described by dimensionless quadrature operators
defined as x̂j = (

âj + â
†
j

)/√
2 and p̂j = i

(
â
†
j − âj

)/√
2 (j = 1, 2). These operators obey a

standard commutation relation [x̂j , p̂k] = iδjk , which is equivalent to
[
âj , â

†
k

] = δjk .
The bipartite system in question is embedded in the thermal environment, which we

imitate by the set of harmonic oscillators. We model the coupling of both modes to the
common reservoir by the interaction Hamiltonian of the form:

H int
one = η

∑
i=1,2

(
âi

∞∑
k=1

b̂
†
k + â

†
i

∞∑
k=1

b̂k

)
. (1)

While in the case when each mode interacts with its own reservoir, the interaction
Hamiltonian is

H int
two = η

(
â1

∞∑
k=1

b̂
†
k + â

†
1

∞∑
k=1

b̂k + â2

∞∑
l=1

ĉ
†
l + â

†
2

∞∑
l=1

ĉl

)
. (2)

In both cases η is a coupling constant.
In order to study the evolution of our system we use the Wigner distribution function

defined as [12]:

W(x, p) = π−2
∫

d2x ′〈x − x ′|ρ̂|x + x ′〉 exp(2ix ′ · p) (3)

where ρ̂ is the density operator, x = (x1, x2) and p = (p1, p2).
For the sake of convenience, we arrange the quadrature operators and the phase space

variables into four-dimensional vectors X̂ = (x̂1, p̂1, x̂2, p̂2) and X = (x1, p1, x2, p2), and
define a quadrature variance matrix [13]:

Vαβ = 〈{�X̂α,�X̂β}〉 = Tr({�X̂α,�X̂β}ρ̂)

=
∫

d4X�Xα�XβW(X) (4)

where {�X̂α,�X̂β} = (�X̂α�X̂β + �X̂β�X̂α)/2. Of course �X̂α = X̂α − 〈X̂α〉 and
〈X̂α〉 = Tr(X̂αρ̂). Similarly, �Xα = Xα − 〈Xα〉, where 〈Xα〉 is calculated as an average of
Xα with respect to the Wigner distribution W(X). Let us stress that 〈Xα〉 equals 〈X̂α〉.

A (zero-mean) Gaussian state is described by the Wigner distribution in the form:

W(X) = (2π)−2(det V)−1/2 exp
(− 1

2 XV−1XT
)

(5)

where V is the variance matrix defined in equation (4).
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To verify whether our system is in an entangled state we use the generalization of the
Peres–Horodecki criterion [14, 15] for continuous variables, derived by Simon [16]. In terms
of the quadrature variance matrix, equation (4), rewritten as follows:

V =
[

A C
CT B

]
(6)

it takes the form of an inequality [16]:

det A det B +
(

1
4 − |det C|)2 − Tr[AJCJBJCT J] − 1

4 (det A + det B) � 0 (7)

where the matrix J is

J =
[

0 1
−1 0

]
. (8)

Inequality (7) is a necessary condition on the variance matrix of a separable bipartite state
[16]. Moreover, Simon [16] has shown that this is also a sufficient condition for separability
for all bipartite Gaussian states composed of two modes, each mode held by each party1. Thus
for Gaussian states considered in this paper, when the inequality (7) is violated the state is
entangled, otherwise it is separable.

Let us note that an equivalent approach is possible to the separability properties of quantum
two-party Gaussian states in the framework of the operator formalism for the density operator,
as has been shown by Englert and Wódkiewicz [18].

To compute the degree of entanglement we use the logarithmic negativity [19]:

E(ρ) = log2 ‖ρ̂TA‖1 (9)

where ‖ρ̂TA‖1 denotes the trace norm of ρ̂TA , and ρ̂TA is a partial transpose of the bipartite state
ρ̂ with respect to the subsystem A. This measure can be regarded as a quantitative version of
the Peres–Horodecki criterion [14, 15], because it quantifies the degree to which ρ̂TA fails to
be positive [19].

For states described by the Wigner function of the form (5), computing the logarithmic
negativity (9) simplifies to a process known as symplectic diagonalization of the variance
matrix (4), as has been shown in [19], i.e. if (λ1, λ2) is the symplectic spectrum of the variance
matrix (4), then the logarithmic negativity equals

E(ρ) = F(λ1) + F(λ2) (10)

where F(λi) (i = 1, 2) is

F(λi) =
{

0 for 2λi � 1
−log2(2λi) for 2λi < 1.

(11)

Evolution of two modes of the electromagnetic field coupled to the common thermal
reservoir might be described by the diffusion equation, i.e. the Fokker–Planck equation.
Namely, for the interaction Hamiltonian of the form (1) it reads (in the interaction picture):

∂tW(X, t) =
∑

j,k=1,2

[
γ

2

(
∂xj

xk + ∂pj
pk

)
+

2N̄ + 1

4

(
∂2
xj ,xk

+ ∂2
pj ,pk

)]
W(X, t) (12)

where γ is a coupling constant and N̄ is a mean thermal photon number. Here it is worthwhile
to note that in the case when one couples each mode to its own reservoir, i.e. the interaction
Hamiltonian is of the form (2), the relevant Fokker–Planck equation is obtained from
equation (12) by substituting j = k.

1 In fact, for a bipartite Gaussian state such that one party holds one mode and the other party holds N modes
positivity of the partial transpose is still a necessary and sufficient criterion for separability [17].
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3. Results

The process of parametric down conversion in nonlinear crystals is used as a source of
entangled pairs in many experiments [4, 5]. In such a process two-mode squeezed vacuum
states are produced. Thus as an initial state of our system we consider the two-mode squeezed
vacuum, which is described by the Wigner function of the form (5) with the variance matrix
as follows:

V = 1

2




n1 0 c1 0
0 n2 0 c2

c1 0 n1 0
0 c2 0 n2


 (13)

where ni and ci are

ni = cosh(2r) c2 = −c1 = sinh(2r) (14)

where r is a squeezing parameter (for r �= 0 this state is entangled). Without loss of generality
we have assumed that the squeezing parameter, r, is real.

While our system evolves, the general form of the variance matrix, equation (13), remains
constant, but elements ni and ci are changing. Thus we may rewrite the Simon criterion,
equation (7), in the form:

1
16 [(n1 − |c1|)(n2 − |c2|) − 1][(n1 + |c1|)(n2 + |c2|) − 1] � 0. (15)

The Simon criterion, equation (7), is a yes–no test for entanglement and thus only the sign
of the left-hand side of inequality (15) is important. Therefore, we omit an expression, which
does not change the sign of inequality (15). Namely, because |ci | is always positive, unless it
is equal to zero and n1n2 is always greater than one, which is a consequence of the uncertainty
principle, it is more convenient to check the sign of the following inequality, instead of using
inequality (15), [7]:

(n1 − |c1|)(n2 − |c2|) − 1 � 0. (16)

When it is satisfied then the state is separable, otherwise it is entangled.
Solving equation (12) with the initial variance matrix in the form of equation (13) with ni

and ci given in equation (14) leads to the time-dependent form of ni and ci :

n1 = 1
2 [2 cosh(2r) + (N − e−2r )τ ]

n2 = 1
2 [2 cosh(2r) + (N − e2r )τ ]

(17)
c1 = 1

2 [(N − e−2r )τ − 2 sinh(2r)]

c2 = 1
2 [(N − e2r )τ + 2 sinh(2r)]

where τ = 1 − e−2γ t , N = 2N̄ + 1 and γ denotes coupling. Then substituting (17) into
inequality (16) we find that if the initial state is sufficiently squeezed, i.e.,

|r| � 1
2 ln(2N̄ + 1) (18)

it will remain entangled forever in spite of interaction. Otherwise, the state will disentangle
after time:

t = 1

2γ
ln

(
2N̄ + 1 − e−2|r|

2N̄ + 1 − e2|r|

)
. (19)

Thus based on condition (18) it is possible to choose such an initial state of the two-mode
squeezed vacuum, for which the entanglement will survive the interaction with the common
reservoir.
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Inequality (18) seems to have the same form as a condition for non-classicality of a
squeezed thermal state [20]. In the latter case, however, N̄ is a mean thermal photon number
and r is a squeezing parameter, both corresponding to the thermal squeezed state. Here
N̄ corresponds to a number of thermal photons in the environment and r is the squeezing
parameter of a state embedded in this environment.

For comparison, if one takes into consideration the coupling to two independent
thermal reservoirs, it will lead to the same general form of the quadrature variance matrix,
equation (13), and the separability condition, equation (16), but coefficients ni and ci would
be different, namely [6, 7, 21]:

ni = cosh(2r) e−γ t + N(1 − e−γ t ) c2 = −c1 = sinh(2r) e−γ t (20)

where, as before, r is a squeezing parameter, N = 2N̄ + 1 and γ denotes coupling. In such a
case, every state will disentangle after the time:

t = 1

γ
ln

(
1 +

1 − e−2|r|

2N̄

)
(21)

unless it would interact with vacuum, as has been shown by Duan et al [21], Scheel et al [8]
and Paris [10]. Such a situation corresponds to the limit N̄ → 0, which implies t → ∞.

For the variance matrix of the form (13) it is easy to find the symplectic spectrum and the
logarithmic negativity. The symplectic spectrum takes the form:

λ1 = 1
2

√
(n1 − c1)(n2 + c2) λ2 = 1

2

√
(n1 + c1)(n2 − c2). (22)

Using the above-mentioned symplectic spectrum, equation (22), and conditions for function
F(λi), equation (11), together with equation (17) it is possible to derive inequality (18) and the
expression for the disentanglement time in the one reservoir case, equation (19). Analogously
it is possible to derive a formula for the disentanglement time in the case of the interaction
with two reservoirs, equation (21).

In particular, the symplectic spectrum, equation (22), holds for an initial two-mode
squeezed vacuum state with ni and ci given by equation (14), and leads to the conclusion that
the logarithmic negativity for such a state is simply proportional to the absolute value of the
squeezing parameter, r:

E(ρ) = 2

ln 2
|r|. (23)

Moreover, having the time-dependent form of ni and ci , equation (17), allows us to write
down the analytic expression for the asymptotic value of the logarithmic negativity at t → ∞:

E(ρ) = 1

ln 2
|r| − 1

2
log2(2N̄ + 1) (24)

which is valid for initial states fulfilling condition (18). In the case when |r| = 1
2 ln(2N̄ + 1),

limt→∞ E(ρ) = 0 (compare with the event of the interaction of two-mode squeezed state with
two separate reservoirs in a vacuum state).

Figures 1 and 2 show changes of the logarithmic negativity, E(ρ), during the interaction
with the common reservoir for different initial values of the squeezing parameter, r, and the
mean thermal photon number, N̄ . Logarithmic negativity, E(ρ), is plotted as a function of
the dimensionless rescaled time τ = 1 − exp(−2γ t) which equals 0 for t = 0 and 1 for
t = ∞. Note that the coupling constant, γ , changes only the time scale and has no effect on
the logarithmic negativity itself. From figure 1 it is easy to note that states satisfying condition
(18) (i.e. for r = 0.5, r = 1 and r = 2) remain entangled forever in spite of interaction.

Figures 3 and 4 show changes of the logarithmic negativity, E(ρ), during the interaction
with two separated reservoirs for different values of the squeezing parameter, r, and the mean
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Ε(ρ)

0.2 0.4 0.6 0.8 1
τ

Figure 1. Logarithmic negativity, E(ρ), for the two-mode squeezed state as a function of
dimensionless time, τ = 1 − exp(−2γ t), which is 0 for t = 0 and 1 for t = ∞, in the common
reservoir model, for N̄ = 0.5 and r = (0, 0.1, 0.5, 1, 2) (from the bottom to the top).
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1.5
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Ε(ρ)

0.2 0.4 0.6 0.8 1
τ

Figure 2. Logarithmic negativity, E(ρ), for the two-mode squeezed state as a function of
dimensionless time, τ = 1 − exp(−2γ t), which is 0 for t = 0 and 1 for t = ∞, in the common
reservoir model, for r = 1 and N = (1, 2, 6, exp(2), 9) (from the top to the bottom), N = 2N̄ + 1.
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Figure 3. Logarithmic negativity, E(ρ), for the two-mode squeezed state as a function of
dimensionless time, τ = 1 − exp(−γ t), which is 0 for t = 0 and 1 for t = ∞, in the two
reservoir model, for N̄ = 0.5 and r = (0, 0.1, 0.5, 1, 2) (from the bottom to the top).

thermal photon number, N̄ . Again the logarithmic negativity, E(ρ), is plotted as a function of
the dimensionless time τ = 1 − exp(−γ t) which equals 0 for t = 0 and 1 for t = ∞. From
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Figure 4. Logarithmic negativity, E(ρ), for the two-mode squeezed state as a function of
dimensionless time, τ = 1 − exp(−γ t), which is 0 for t = 0 and 1 for t = ∞, in the two
reservoir model, for r = 1 and N = (1, 2, 6, exp(2), 9) (from the top to the bottom), N = 2N̄ + 1.

figure 4 it is easy to note that only in the case of interaction with vacuum, namely N = 1, do
state remain entangled.

Let us stress that figures 1 and 3 (similarly figures 2 and 4) are plotted for the same initial
values of the squeezing parameter, r, and the mean thermal photon number, N̄ , but for different
models of interaction.

It is worth noting that in the case when a pure two-mode squeezed vacuum state interacts
with a common reservoir initially in vacuum state (N̄ = 0) the resulting state, after an infinitely
long interaction, is pure, but it is not vacuum. The final state is squeezed, and thus entangled.

This is the case because of the properties of the interaction Hamiltonian (1), which show
up after non-local transformation of variables such as




x1

p1

x2

p2


 →




xS

pS

xD

pD


 =




x1 + x2

p1 + p2

x2 − x1

p2 − p1


 (25)

where new variables are just sums and differences of the old ones.
Our initial state is pure and rewriting it in a new basis does not change its purity, while

the interaction Hamiltonian (1) appears to couple to the reservoir only mode S described by
sums, (xS, pS), leaving mode D described by differences, (xD, pD), unaffected [22]. Thus,
only mode S interacts with the thermal reservoir and mode D undergoes free evolution. As
a consequence, mode S first experiences decoherence and then dissipation to the state of the
reservoir (see figures 5 and 6, decoherence for γ t = 0–0.5 and dissipation for γ t > 0.5).
Therefore, if the vacuum is the environment of interest, mode S becomes vacuum after some
time. Clearly both modes are pure, mode S because it is vacuum and mode D because it
had evolved freely. Hence the final state is also pure, but it is still squeezed, because some
squeezing ‘survived’ in mode D, and thus it is still entangled. If the reservoir initially is not
in vacuum, the final state will be mixed. Here mode D enables us to span some kind of a
decoherence-free subspace [23].

Of course in the case of interaction with two independent reservoirs, the interaction
Hamiltonian (2) does not exhibit such a property under change of variables (25).

For the sake of clarity we plot the purity, Tr[ρ2], of the state of interest as a function of
time for different initial values of the squeezing parameter, r, and the mean thermal photon
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Figure 5. Purity, Tr[ρ2], for the two-mode squeezed state as a function of γ t , in the common
reservoir model, for N̄ = 0.5 and different initial squeezing.
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N=e2
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Figure 6. Purity, Tr[ρ2], for the two-mode squeezed state as a function of γ t , in the common
reservoir model, for r = 1 and different mean thermal photon number, N = 2N̄ + 1.

number, N̄ (see figures 5 and 6). For a Gaussian state described by the Wigner function with
the variance matrix of the form (13) purity equals:

Tr[ρ2] = 1√(
n2

1 − c2
1

)(
n2

2 − c2
2

) . (26)

4. Summary

Summarizing, for the coupling to the common reservoir, we noted that whether the state
is entangled or not depends mostly on the initial degree of squeezing. If the state is
initially sufficiently squeezed, i.e. according to condition (18), it will always remain entangled,
independently of the strength of the coupling to the environment. Otherwise, the state initially
entangled will become separable after the time given in equation (19). It is clearly a different
result from that obtained for the model in which each of the two entangled modes interacts
with its own reservoir. In such a case only the interaction with vacuum fluctuations does not
lead to disentanglement [21]. Moreover, we have shown that in the case of interaction with a
common reservoir being in a vacuum state, the state of interest, after infinitely long interaction,
is not only still entangled, but is also pure.
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